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Fig. 3. Deflection ratio as funfction of by/b, for several values
of g.
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After substitution for ¢ and b and integration this becomes
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Similarly for this section shown in Fig. 1(b),
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With the preceding equations, the bending stresses may be
determined for a given cross section and bending moment if
the parameter 8 is known. As 8 has to be determined, how-
ever, the equations must be used in somewhat different form.

In pure bending, the radius of curvature R of the neutral
axis at a given time is related to the surface strain
by 1/R = en/H, = BonF/H, and similarly 1/R’ =
Bon'.F/H';. Hence the ratio of the two curvatures at a given
time 1/R <+ 1/R’ is merely the right-hand side of Eq. (3)
divided by the right-hand side of Eq. (2). The curvature is
given by 1/R = d*y/dx*/[1 + (dy/dx)?]*/?, where 1y is bending
deflection and x is distance along the beam. In most practical
cases the slope dy/dx is small enough for this to be written as
1/R = d*y/dx? and bending deflections will then be directly
proportional to 1/R. Thus, if the beams with cross sections
shown in Fig. 1 are subjected to the same bending moments
the ratio of deflections 8/8’ at corresponding locations along
the beam at a given time are given by
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Fig. 4. Quantity used to obtain creep constants as a function
of b,/b, for several values of 8.

1/R _ Right-hand side Eq. (3)

8/8' = =57 = o3 3
1/R Right-hand side Eq. (2)

This relation is shown in Fig. 3 for a range of values of 8 and
bs/bi. By observing the ratio at several times, for which creep
strains are large relative to elastic strains, the ratio § may be
found. If B varies greatly with time the preceding analysis is
not applicable, whereas if 8 = 1, tension and compression
creep are equivalent and the analysis of bending tests presents
no difficulty. If 8 # 1, the next step is to determine the in-
dividual tension or compression creep data. This may be
done by using Eq. (2) to find o, for a given bending moment.
Measurements of curvature as a function of time (obtained
from bending deflection data) then make it possible to deter-
mine F from F = (1/R) (H/ou.) (1/8). For this purpose Fig.
4 shows (3M/b,H?) (H,/ o n,) for various values of g and by/b1.
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